Ferritin iron regulators, PCBP1 and NCOA4, respond to cellular iron status in developing red cells

铁蛋白铁调节剂 PCBP1 和 NCOA4 对发育中的红细胞中的细胞铁状态作出反应

阅读:4
作者:Moon-Suhn Ryu, Kari A Duck, Caroline C Philpott

Abstract

Developing red blood cells exhibit multiple, redundant systems for regulating and coordinating the uptake of iron, the synthesis of heme, and the formation of hemoglobin during terminal differentiation. We recently described the roles of poly rC-binding protein (PCBP1) and nuclear coactivator 4 (NCOA4) in mediating the flux of iron through ferritin in developing erythroid cells, with PCBP1, an iron chaperone, delivering iron to ferritin and NCOA4, an autophagic cargo receptor, directing ferritin to the lysosome for degradation and iron release. Ferritin iron flux is critical, as mice lacking these factors develop microcytic anemia. Here we report that these processes are regulated by cellular iron levels in a murine model of ex vivo terminal differentiation. PCBP1 delivers iron to ferritin via a direct protein-protein interaction. This interaction is developmentally regulated, enhanced by iron deprivation, and inhibited by iron excess, both in developing cells and in vitro. NCOA4 activity also exhibited developmental regulation and regulation by cellular iron levels. Excess iron uptake during differentiation triggered lysosomal degradation of NCOA4, which was dependent on the E3 ubiquitin ligase HERC2. Thus, developing red blood cells express a series of proteins that both mediate and regulate the flux of iron to the mitochondria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。