Regulation of single-cell genome organization into TADs and chromatin nanodomains

单细胞基因组组织成TAD和染色质纳米域的调控

阅读:4
作者:Quentin Szabo, Axelle Donjon #, Ivana Jerković #, Giorgio L Papadopoulos #, Thierry Cheutin, Boyan Bonev, Elphège P Nora, Benoit G Bruneau, Frédéric Bantignies, Giacomo Cavalli

Abstract

The genome folds into a hierarchy of three-dimensional structures within the nucleus. At the sub-megabase scale, chromosomes form topologically associating domains (TADs)1-4. However, how TADs fold in single cells is elusive. Here, we reveal TAD features inaccessible to cell population analysis by using super-resolution microscopy. TAD structures and physical insulation associated with their borders are variable between individual cells, yet chromatin intermingling is enriched within TADs compared to adjacent TADs in most cells. The spatial segregation of TADs is further exacerbated during cell differentiation. Favored interactions within TADs are regulated by cohesin and CTCF through distinct mechanisms: cohesin generates chromatin contacts and intermingling while CTCF prevents inter-TAD contacts. Furthermore, TADs are subdivided into discrete nanodomains, which persist in cells depleted of CTCF or cohesin, whereas disruption of nucleosome contacts alters their structural organization. Altogether, these results provide a physical basis for the folding of individual chromosomes at the nanoscale.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。