Carboxymethylcellulose Mediates the Transport of Carbon Nanotube-Magnetite Nanohybrid Aggregates in Water-Saturated Porous Media

羧甲基纤维素介导碳纳米管-磁铁矿纳米杂化聚集体在水饱和多孔介质中的输送

阅读:5
作者:Dengjun Wang, Chang Min Park, Arvid Masud, Nirupam Aich, Chunming Su

Abstract

Carbon-metal oxide nanohybrids (NHs) are increasingly recognized as the next-generation, promising group of nanomaterials for solving emerging environmental issues and challenges. This research, for the first time, systematically explored the transport and retention of carbon nanotube-magnetite (CNT-Fe3O4) NH aggregates in water-saturated porous media under environmentally relevant conditions. A macromolecule modifier, carboxymethylcellulose (CMC), was employed to stabilize the NHs. Our results show that transport of the magnetic CNT-Fe3O4 NHs was lower than that of nonmagnetic CNT due to larger hydrodynamic sizes of NHs (induced by magnetic attraction) and size-dependent retention in porous media. Classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory can explain the mobility of NHs under varying experimental conditions. However, in contrast with colloid filtration theory, a novel transport feature-an initial lower and a following sharp-higher peaks occurred frequently in the NHs' breakthrough curves. The magnitude and location of both transport peaks varied with different experimental conditions, due to the interplay between variability of fluid viscosity and size-selective retention of the NHs. Promisingly, the estimated maximum transport distance of NHs ranged between ∼0.38 and 46 m, supporting the feasibility of employing the magnetically recyclable CNT-Fe3O4 NHs for in situ nanoremediation of contaminated soil, aquifer, and groundwater.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。