A small peptide modeled after the NRAGE repeat domain inhibits XIAP-TAB1-TAK1 signaling for NF-κB activation and apoptosis in P19 cells

仿照 NRAGE 重复结构域的小肽可抑制 XIAP-TAB1-TAK1 信号传导,从而抑制 P19 细胞中的 NF-κB 激活和凋亡

阅读:4
作者:Jennifer A Rochira, Nicholas N Matluk, Tamara L Adams, Aldona A Karaczyn, Leif Oxburgh, Samuel T Hess, Joseph M Verdi

Abstract

In normal growth and development, apoptosis is necessary to shape the central nervous system and to eliminate excess neurons which are not required for innervation. In some diseases, however, apoptosis can be either overactive as in some neurodegenerative disorders or severely attenuated as in the spread of certain cancers. Bone morphogenetic proteins (BMPs) transmit signals for regulating cell growth, differentiation, and apoptosis. Responding to BMP receptors stimulated from BMP ligands, neurotrophin receptor-mediated MAGE homolog (NRAGE) binds and functions with the XIAP-TAK1-TAB1 complex to activate p38(MAPK) and induces apoptosis in cortical neural progenitors. NRAGE contains a unique repeat domain that is only found in human, mouse, and rat homologs that we theorize is pivotal in its BMP MAPK role. Previously, we showed that deletion of the repeat domain inhibits apoptosis, p38(MAPK) phosphorylation, and caspase-3 cleavage in P19 neural progenitor cells. We also showed that the XIAP-TAB1-TAK1 complex is dependent on NRAGE for IKK-α/β phosphorylation and NF-κB activation. XIAP is a major inhibitor of caspases, the main executioners of apoptosis. Although it has been shown previously that NRAGE binds to the RING domain of XIAP, it has not been determined which NRAGE domain binds to XIAP. Here, we used fluorescence resonance energy transfer (FRET) to determine that there is a strong likelihood of a direct interaction between NRAGE and XIAP occurring at NRAGE's unique repeat domain which we also attribute to be the domain responsible for downstream signaling of NF-κB and activating IKK subunits. From these results, we designed a small peptide modeled after the NRAGE repeat domain which we have determined inhibits NF-κB activation and apoptosis in P19 cells. These intriguing results illustrate that the paradigm of the NRAGE repeat domain may hold promising therapeutic strategies in developing pharmaceutical solutions for combating harmful diseases involving excessive downstream BMP signaling, including apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。