Glycyrrhizin Use for Multi-Drug Resistant Pseudomonas aeruginosa: In Vitro and In Vivo Studies

甘草甜素用于治疗耐多药铜绿假单胞菌:体外和体内研究

阅读:9
作者:Linda D Hazlett, Sandamali A Ekanayaka, Sharon A McClellan, Rebecca Francis

Conclusions

GLY decreases MDR by: altering bacterial parameters, including viability and efflux pump activity. In vivo, it increases the effectiveness of ciprofloxacin, reducing ocular disease, plate count, and MPO activity.

Methods

A Hardy-disk tested antibiotic sensitivity of isolates MDR9 (nonocular) and B1045 (ocular). GLY MIC (both isolates) and ciprofloxacin was determined spectrophotometrically. A live/dead assay using confocal microscopy and plate count, tested GLY effects on bacterial permeabilization/viability. Proteomics profiled bacterial efflux pumps (MDR9 vs. PAO1); RT-PCR comparatively tested GLY effects on their mRNA expression levels. The activity of efflux pumps was tested using ethidium bromide (EB); and scanning electron microscopy (SEM) visualized the effects of GLY treatment of bacteria. A combination of GLY and ciprofloxacin was tested in C57BL/6 mice (begun 18 hours after infection) and disease scored, photographed and MPO and plate counts done.

Purpose

Our purpose was to test glycyrrhizin (GLY) effects and ciprofloxacin interactions on multidrug resistant (MDR) isolates of Pseudomonas aeruginosa in vitro and in vivo in a mouse model of keratitis.

Results

MDR9 was resistant to 6/12 and B1045 to 7/12 antibiotics (both to ciprofloxacin). MIC GLY for MDR9 was 40 mg/mL and 15 mg/mL for B1045. Ciprofloxacin MIC (32 μg/mL) was reduced 2-fold to 16 μg/mL when ciprofloxacin and GLY were combined. GLY altered bacterial membrane permeability and reduced viability. Proteomics revealed increased efflux pumps in MDR9 versus PAO1; GLY reduced their mRNA expression levels and EB suggested decreased activity. In C57BL/6 mice, treatment with GLY and ciprofloxacin versus ciprofloxacin, significantly reduced clinical scores, plate count, and MPO. Conclusions: GLY decreases MDR by: altering bacterial parameters, including viability and efflux pump activity. In vivo, it increases the effectiveness of ciprofloxacin, reducing ocular disease, plate count, and MPO activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。