Filamin A mediates isotropic distribution of applied force across the actin network

细丝蛋白 A 介导肌动蛋白网络中施加力的各向同性分布

阅读:4
作者:Abhishek Kumar, Maria S Shutova, Keiichiro Tanaka, Daniel V Iwamoto, David A Calderwood, Tatyana M Svitkina, Martin A Schwartz

Abstract

Cell sensing of externally applied mechanical strain through integrin-mediated adhesions is critical in development and physiology of muscle, lung, tendon, and arteries, among others. We examined the effects of strain on force transmission through the essential cytoskeletal linker talin. Using a fluorescence-based talin tension sensor (TS), we found that uniaxial stretch of cells on elastic substrates increased tension on talin, which was unexpectedly independent of the orientation of the focal adhesions relative to the direction of strain. High-resolution electron microscopy of the actin cytoskeleton revealed that stress fibers (SFs) are integrated into an isotropic network of cortical actin filaments in which filamin A (FlnA) localizes preferentially to points of intersection between SFs and cortical actin. Knockdown (KD) of FlnA resulted in more isolated, less integrated SFs. After FlnA KD, tension on talin was polarized in the direction of stretch, while FlnA reexpression restored tensional symmetry. These data demonstrate that a FlnA-dependent cortical actin network distributes applied forces over the entire cytoskeleton-matrix interface.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。