Theoretical and Experimental Studies of Ti3C2 MXene for Surface-Enhanced Raman Spectroscopy-Based Sensing

Ti3C2 MXene 用于表面增强拉曼光谱传感的理论和实验研究

阅读:7
作者:Yusi Peng, Ping Cai, Lili Yang, Yingying Liu, Linfeng Zhu, Qiuqi Zhang, Jianjun Liu, Zhengren Huang, Yong Yang

Abstract

Recent advances in MXenes with high carrier mobility show great application prospects in the surface-enhanced Raman scattering (SERS) field. However, challenges remain regarding the improvement of the SERS sensitivity. Herein, an effective strategy considering charge-transfer resonance for semiconductor-based substrates is presented to optimize the SERS sensitivity with the guidance of the density functional theory calculation. The theoretical calculation predicted that the excellent SERS enhancement for methylene blue (MeB) on Ti3C2 MXene can be excited by both 633 and 785 nm lasers, and the Raman enhanced effect is mainly originated from the charge-transfer resonance enhancement. In this work, the Ti3C2 MXenes exhibit an excellent SERS sensitivity with an enhancement factor of 2.9 × 106 and a low detection limit of 10-7 M for MeB molecules. Furthermore, the SERS enhancement of Ti3C2 and Au-Ti3C2 substrates exhibit higher selectivity on different molecules, which contributes to the detection of target molecules in complex solution environments. This work can provide some theoretical and experimental basis for the research on SERS activity of other MXene materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。