Peripheral antinociceptive effects of a bifunctional μ and δ opioid receptor ligand in rat model of inflammatory bladder pain

双功能 μ 和 δ 阿片受体配体在炎症性膀胱痛大鼠模型中的外周抗伤害作用

阅读:4
作者:Maia Terashvili, Bhavana Talluri, Watchareepohn Palangmonthip, Kenneth A Iczkowski, Patrick Sanvanson, Bidyut K Medda, Banani Banerjee, Christopher W Cunningham, Jyoti N Sengupta

Abstract

There is a need to develop a novel analgesic for pain associated with interstitial cystitis/painful bladder syndrome (IC/PBS). The use of the conventional μ-opioid receptor agonists to manage IC/PBS pain is controversial due to adverse CNS effects. These effects are attenuated in benzylideneoxymorphone (BOM), a low-efficacy μ-opioid receptor agonist/δ-opioid receptor antagonist that attenuates thermal pain and is devoid of reinforcing effects. We hypothesize that BOM will inhibit bladder pain by attenuating responses of urinary bladder distension (UBD)-sensitive afferent fibers. Therefore, the effect of BOM was tested on responses of UBD-sensitive afferent fibers in L6 dorsal root from inflamed and non-inflamed bladder of rats. Immunohistochemical (IHC) examination reveals that following the induction of inflammation there were significant high expressions of μ, δ, and μ-δ heteromer receptors in DRG. BOM dose-dependently (1-10 mg/kg, i.v) attenuated mechanotransduction properties of these afferent fibers from inflamed but not from non-inflamed rats. In behavioral model of bladder pain, BOM significantly attenuated visceromotor responses (VMRs) to UBD only in inflamed group of rats when injected either systemically (10 mg/kg, i.v.) or locally into the bladder (0.1 ml of 10 mg/ml). Furthermore, oxymorphone (OXM), a high-efficacy μ-opioid receptor agonist, attenuated responses of mechanosensitive bladder afferent fibers and VMRs to UBD. Naloxone (10 mg/kg, i.v.) significantly reversed the inhibitory effects of BOM and OXM on responses of bladder afferent fibers and VMRs suggesting μ-opioid receptor-related analgesic effects of these compounds. The results reveal that a low-efficacy, bifunctional opioid-based compound can produce analgesia by attenuating mechanotransduction functions of afferent fibers innervating the urinary bladder.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。