Depolarizing, inhibitory GABA type A receptor activity regulates GABAergic synapse plasticity via ERK and BDNF signaling

去极化、抑制性 GABA A 型受体活性通过 ERK 和 BDNF 信号传导调节 GABA 能突触可塑性

阅读:5
作者:Megan L Brady, Jyotsna Pilli, Joshua M Lorenz-Guertin, Sabyasachi Das, Charles E Moon, Nicholas Graff, Tija C Jacob

Abstract

γ-aminobutyric acid (GABA) begins as the key excitatory neurotransmitter in newly forming circuits, with chloride efflux from GABA type A receptors (GABAARs) producing membrane depolarization, which promotes calcium entry, dendritic outgrowth and synaptogenesis. As development proceeds, GABAergic signaling switches to inhibitory hyperpolarizing neurotransmission. Despite the evidence of impaired GABAergic neurotransmission in neurodevelopmental disorders, little is understood on how agonist-dependent GABAAR activation controls the formation and plasticity of GABAergic synapses. We have identified a weakly depolarizing and inhibitory GABAAR response in cortical neurons that occurs during the transition period from GABAAR depolarizing excitation to hyperpolarizing inhibitory activity. We show here that treatment with the GABAAR agonist muscimol mediates structural changes that diminish GABAergic synapse strength through postsynaptic and presynaptic plasticity via intracellular Ca2+ stores, ERK and BDNF/TrkB signaling. Muscimol decreases synaptic localization of surface γ2 GABAARs and gephyrin postsynaptic scaffold while β2/3 non-γ2 GABAARs accumulate in the synapse. Concurrent with this structural plasticity, muscimol treatment decreases synaptic currents while enhancing the γ2 containing benzodiazepine sensitive GABAAR tonic current in an ERK dependent manner. We further demonstrate that GABAAR activation leads to a decrease in presynaptic GAD65 levels via BDNF/TrkB signaling. Together these data reveal a novel mechanism for agonist induced GABAergic synapse plasticity that can occur on the timescale of minutes, contributing to rapid modification of synaptic and circuit function.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。