The Real-Time Validation of the Effectiveness of Third-Generation Hyperbranched Poly(ɛ-lysine) Dendrons-Modified KLVFF Sequences to Bind Amyloid-β1-42 Peptides Using an Optical Waveguide Light-Mode Spectroscopy System

使用光波导光模光谱系统实时验证第三代超支化聚(ε-赖氨酸)树枝状大分子修饰的 KLVFF 序列与淀粉样蛋白-β1-42 肽结合的有效性

阅读:6
作者:Valeria Perugini, Matteo Santin

Abstract

The aggregation of cytotoxic amyloid peptides (Aβ1-42) is widely recognised as the cause of brain tissue degeneration in Alzheimer's disease (AD). Indeed, evidence indicates that the deposition of cytotoxic Aβ1-42 plaques formed through the gradual aggregation of Aβ1-42 monomers into fibrils determines the onset of AD. Thus, distinct Aβ1-42 inhibitors have been developed, and only recently, the use of short linear peptides has shown promising results by either preventing or reversing the process of Aβ1-42 aggregation. Among them, the KLVFF peptide sequence, which interacts with the hydrophobic region of Aβ16-20, has received widespread attention due to its ability to inhibit fibril formation of full-length Aβ1-42. In this study, hyperbranched poly-L-lysine dendrons presenting sixteen KLVFF at their uppermost molecular branches were designed with the aim of providing the KLVFF sequence with a molecular scaffold able to increase its stability and of improving Aβ1-42 fibril formation inhibitory effect. These high-purity branched KLVFF were used to functionalise the surface of the metal oxide chip of the optical waveguide lightmode spectroscopy sensor showing the more specific, accurate and rapid measurement of Aβ1-42 than that detected by linear KLVFF peptides.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。