Epstein-Barr virus latent membrane protein 1 represses DNA repair through the PI3K/Akt/FOXO3a pathway in human epithelial cells

EB 病毒潜伏膜蛋白 1 通过 PI3K/Akt/FOXO3a 通路抑制人类上皮细胞中的 DNA 修复

阅读:6
作者:Yi-Ren Chen, Ming-Tsan Liu, Yu-Ting Chang, Chung-Chun Wu, Chi-Yuan Hu, Jen-Yang Chen

Abstract

Latent membrane protein 1 (LMP1), an Epstein-Barr virus (EBV) oncoprotein, mimics a constitutively activated tumor necrosis factor receptor and activates various signaling pathways, including phosphatidylinositol 3-kinase (PI3K)/Akt. LMP1 is essential for EBV-mediated B-cell transformation and is sufficient to transform several cell lines. Cellular transformation has been associated strongly with genomic instability, while DNA repair plays an important role in maintaining genomic stability. Previously, we have shown that LMP1 represses DNA repair by the C-terminal activating region 1 (CTAR1) in human epithelial cells. In the present study, we demonstrate that the PI3K/Akt pathway is required for LMP1-mediated repression of DNA repair. Through the LMP1/PI3K/Akt pathway, FOXO3a, which can induce DNA repair, is inactivated because of phosphorylation and relocalization. Expression of a constitutively active FOXO3a mutant can rescue LMP1-mediated repression of DNA repair. Furthermore, LMP1 can decrease the expression of DNA damage-binding protein 1 (DDB1), which functions in nucleotide excision repair, through the PI3K/Akt/FOXO3a pathway. LMP1-mediated repression of DNA repair is restored by DDB1, although only partially. These results suggest that LMP1 triggers the PI3K/Akt pathway to inactivate FOXO3a and decrease DDB1, which can lead to repression of DNA repair and may contribute to genomic instability in human epithelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。