Controllable Electrically Guided Nano-Al/MoO3 Energetic-Film Formation on a Semiconductor Bridge with High Reactivity and Combustion Performance

具有高反应性和燃烧性能的半导体桥上可控电导纳米 Al/MoO3 能量膜的形成

阅读:5
作者:Xiaogang Guo, Qi Sun, Taotao Liang, A S Giwa

Abstract

Film-forming techniques and the control of heat release in micro-energetic chips or devices create challenges and bottlenecks for the utilization of energy. In this study, promising nano-Al/MoO3 metastable intermolecular composite (MIC) chips with an uniform distribution of particles were firstly designed via a convenient and high-efficiency electrophoretic deposition (EPD) technique at room temperature and under ambient pressure conditions. The mixture of isopropanol, polyethyleneimine, and benzoic acid proved to be an optimized dispersing agent for EPD. The kinetics of EPD for oxidants (Al) and reductants (MoO3) were systematically investigated, which contributed to adjusting the equivalence ratio of targeted energetic chips after changing the EPD dynamic behaviors of Al and MoO3 in suspension. In addition, the obtained nano-Al/MoO3 MIC energetic chips showed excellent heat-release performance with a high heat release of ca. 3340 J/g, and were successfully ignited with a dazzling flame recorded by a high-speed camera. Moreover, the fabrication method here is fully compatible with a micro-electromechanical system (MEMS), which suggests promising potential in designing and developing other MIC energetic chips or devices for micro-ignition/propulsion applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。