Development of a Fluorescent Quenching Based High Throughput Assay to Screen for Calcineurin Inhibitors

开发基于荧光猝灭的高通量检测方法以筛选钙调磷酸酶抑制剂

阅读:9
作者:Abhisek Mukherjee, Kathleen Syeb, John Concannon, Keri Callegari, Claudio Soto, Marcie A Glicksman

Abstract

Currently there is no effective treatment available for major neurodegenerative disorders associated to protein misfolding, including Alzheimer's and Parkinson's disease. One of most promising therapeutic approaches under development focuses on inhibiting the misfolding and aggregation pathway. However, it is likely that by the time clinical symptoms appear, there is a large accumulation of misfolded aggregates and a very substantial damage to the brain. Thus, it seems that at the clinical stage of the disease it is necessary also to develop strategies aiming to prevent the neuronal damage produced by already formed misfolded aggregates. Chronic activation of calcineurin (CaN), a type IIB phosphatase, has been implicated as a pivotal molecule connecting synaptic loss and neuronal damage to protein misfolding. The fact that the crystal structure of CaN is also well established makes it an ideal target for drug discovery. CaN activity assays for High Throughput Screening (HTS) reported so far are based on absorbance. In this article we report the development of a fluorescent quenching based CaN activity assay suitable for robotic screening of large chemical libraries to find novel inhibitors. The assay yielded a Z score of 0.84 with coefficient of variance ≤ 15%. Our results also show that this assay can be used to identify CaN inhibitors with a wide range of potencies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。