Dietary Restriction Improves Perioperative Neurocognitive Disorders by Inhibiting Neuroinflammation and Gut Microbial Dysbiosis

饮食限制可通过抑制神经炎症和肠道微生物失调改善围手术期神经认知障碍

阅读:8
作者:Lulu Ren, Huazheng Liang, Li Zhu, Xiao Yang, Hong Zhang, Nianyi Sun, Dunbing Huang, Jing Feng, Yufeng Wu, Lize Xiong, Xiaohua Ke, Min Li, Anren Zhang

Abstract

Anesthesia/surgery have been identified as potential factors contributing to perioperative neurocognitive disorders, with a notably heightened risk observed in aging populations. One of the primary drivers of this impairment is believed to be neuroinflammation, specifically inflammation of hippocampal microglia. Dietary restriction has demonstrated a favorable impact on cognitive impairment across various disorders, primarily by quelling neuroinflammation. However, the precise influence of dietary restriction on perioperative neurocognitive disorders remains to be definitively ascertained. This investigation aims to explore the effects of dietary restriction on perioperative neurocognitive disorders and propose innovative therapeutic strategies for their management. The model of perioperative neurocognitive disorder was induced through exploratory laparotomy under isoflurane anesthesia. Cognitive performance was evaluated using the open field test, Barnes maze test, and fear conditioning test. The enzyme-linked immunosorbent assay (ELISA) was employed to quantify concentrations of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in both serum and hippocampal samples. The Western blot technique was utilized to assess expression levels of hippocampal PSD 95, Synaptophysin, TLR4, MyD88, and NF-kB p65. Microglial polarization was gauged using a combination of reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence labeling techniques. We conducted 16S rRNA sequencing to investigate the impact of dietary restriction on the intestinal flora of aged mice following anesthesia/surgery. Our findings indicate that dietary restrictions have the potential to ameliorate anesthesia/surgery-induced cognitive dysfunction. This effect is achieved through the modulation of gut microbiota, suppression of inflammatory responses in hippocampal microglia, and facilitation of neuronal repair and regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。