EphA4/EphrinB2 signaling mediates pericyte-induced transient glia limitans formation as a secondary protective barrier after subarachnoid hemorrhage in mice

EphA4/EphrinB2 信号介导周细胞诱导的瞬时胶质细胞界限形成,作为小鼠蛛网膜下腔出血后的次级保护屏障

阅读:5
作者:Jiru Zhou, Peiwen Guo, Mingxu Duan, Junhan Li, Xufang Ru, Lin Li, Zongduo Guo, John H Zhang, Hua Feng, Yujie Chen, Xiaochuan Sun

Background

Most patients with subarachnoid hemorrhage (SAH) do not exhibit brain parenchymal injury upon imaging but present significant blood-brain barrier (BBB) disruption and secondary neurological deficits. The

Conclusions

Astrocyte-derived glia limitans serve as a secondary protective barrier following BBB disruption after SAH in mice, and pericytes can regulate glial limitan formation and alter neurological function via EphA4/EphrinB2 signaling. Strategies for maintaining this secondary protective barrier may be novel treatment approaches for alleviating early brain injury after SAH.

Methods

A total of 204 adult male C57BL/6 mice and an endovascular perforation SAH model were employed. The spatiotemporal characteristics of glial limitan formation after SAH were determined by immunofluorescence staining and transmission electron microscopy. The molecular mechanisms by which pericytes regulate glia limitans formation were analyzed using polymerase chain reaction, Western blotting, immunofluorescence staining and ELISA in a pericyte-astrocyte contact coculture system. The findings were validated ex vivo and in vivo using lentiviruses and inhibitors. Finally, pericytes were targeted to regulate glial limitan formation, and the effect of the glia limitans on secondary brain injury after SAH was evaluated by flow cytometry and analysis of neurological function.

Results

Stress-induced glial limitan formation occurred 1 day after SAH and markedly subsided 3 days after ictus. Pericytes regulated astrocyte glia limitan formation via EphA4/EphrinB2 signaling, inhibited inflammatory cell infiltration and altered neurological function. Conclusions: Astrocyte-derived glia limitans serve as a secondary protective barrier following BBB disruption after SAH in mice, and pericytes can regulate glial limitan formation and alter neurological function via EphA4/EphrinB2 signaling. Strategies for maintaining this secondary protective barrier may be novel treatment approaches for alleviating early brain injury after SAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。