Delayed recanalization at 3 days after permanent MCAO attenuates neuronal apoptosis through FGF21/FGFR1/PI3K/Caspase-3 pathway in rats

永久性 MCAO 后 3 天延迟再通可通过 FGF21/FGFR1/PI3K/Caspase-3 通路减轻大鼠神经元凋亡

阅读:10
作者:Wen Zheng, Nathanael Matei, Jinwei Pang, Xu Luo, Zhi Song, Jiping Tang, John H Zhang

Abstract

Reperfusion exceeded time window may induce ischemia/reperfusion injury, increase hemorrhagic transformation, and deteriorate neurological outcomes in ischemic stroke models. However, the increasing clinical evidences supported that reperfusion even within 6-24 h may salvage ischemic tissue and improve neurological outcomes in selected large vessel occlusion patients, without inducing serious ischemia/reperfusion injury and hemorrhagic transformation. The underlying molecular mechanisms are less clear. In present study, we demonstrated that delayed recanalization at 3 days after permanent middle cerebral artery occlusion (MCAO) decreased infarct volumes and improved neurobehavioral deficits in rats, with no increasing animal mortality and intracerebral hemorrhage. Meanwhile, we observed that endogenous neuroprotective agent fibroblast growth factor 21 (FGF21) significantly increased in serum after MCAO, but which did not synchronously increase in penumbra due to permanent MCAO. Recanalization dramatically increased the endogenous FGF21 expression on neurons in penumbra after MCAO. We confirmed that FGF21 activated the FGFR1/PI3K/Caspase-3 signaling pathway, which attenuated neuronal apoptosis in penumbra. Conversely, knockdown of FGFR1 via FGFR1 siRNA abolished the anti-apoptotic effects of FGF21, and in part abrogated beneficial effects of recanalization on neurological outcomes. These findings suggested that delayed recanalization at 3 days after MCAO improved neurological outcomes in rats via increasing endogenous FGF21 expression and activating FGFR1/PI3K/Caspase-3 pathway to attenuate neuronal apoptosis in penumbra. Delayed recanalization at 3 days after ischemic stroke onset may be a promising treatment strategy in selected patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。