Inhibition of casein kinase 1-epsilon induces cancer-cell-selective, PERIOD2-dependent growth arrest

抑制酪蛋白激酶 1-epsilon 可诱导癌细胞选择性、PERIOD2 依赖性生长停滞

阅读:7
作者:Wan Seok Yang, Brent R Stockwell

Background

Kinases are under extensive investigation as targets for drug development. Discovering novel kinases whose inhibition induces cancer-cell-selective lethality would be of value. Recent advances in RNA interference have enabled the realization of this goal.

Conclusion

We identified CK1epsilon as a potential target for developing anticancer reagents with a high therapeutic index. These data support the hypothesis that circadian clock genes can control the cell cycle and cell survival signaling, and emphasize a central role of CK1epsilon and PERIOD2 in linking these systems.

Results

We screened 5,760 short hairpin RNA clones targeting the human kinome to detect human kinases on which cancer cells are more dependent than normal cells. We employed a two-step screening strategy using human sarcoma cell lines and human fibroblast-derived isogenic cell lines, and found that short hairpin RNAs targeting CSNK1E, a clock gene that regulates circadian rhythms, can induce selective growth inhibition in engineered tumor cells. Analysis of gene-expression data revealed that CSNK1E is overexpressed in several cancer tissue samples examined compared to non-tumorigenic normal tissue, suggesting a positive role of CSNK1E in neogenesis or maintenance. Treatment with IC261, a kinase domain inhibitor of casein kinase 1-epsilon (CK1epsilon), a protein product of CSNK1E, showed a similar degree of cancer-cell-selective growth inhibition. In a search for substrates of CK1epsilon that mediate IC261-induced growth inhibition, we discovered that knocking down PER2, another clock gene involved in circadian rhythm control, rescues IC261-induced growth inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。