Glutamine Reduces the Apoptosis of H9C2 Cells Treated with High-Glucose and Reperfusion through an Oxidation-Related Mechanism

谷氨酰胺通过氧化相关机制减轻高糖再灌注处理的H9C2细胞凋亡

阅读:7
作者:Kai Li, Yong-Chun Cui, Hong Zhang, Xiao-Peng Liu, Dong Zhang, Ai-Li Wu, Jian-Jun Li, Yue Tang

Abstract

Mitochondrial overproduction of reactive oxygen species (ROS) in diabetic hearts during ischemia/reperfusion injury and the anti-oxidative role of glutamine have been demonstrated. However, in diabetes mellitus the role of glutamine in cardiomyocytes during ischemia/reperfusion injury has not been explored. To examine the effects of glutamine and potential mechanisms, in the present study, rat cardiomyoblast H9C2 cells were exposed to high glucose (33 mM) and hypoxia-reoxygenation. Cell viability, apoptosis, intracellular glutamine, and mitochondrial and intracellular glutathione were determined. Moreover, ROS formation, complex I activity, membrane potential and adenosine triphosphate (ATP) content were also investigated. The levels of S-glutathionylated complex I and mitochondrial apoptosis-related proteins, including cytochrome c and caspase-3, were analyzed by western blot. Data indicated that high glucose and hypoxia-reoxygenation were associated with a dramatic decline of intercellular glutamine and increase in apoptosis. Glutamine supplementation correlated with a reduction in apoptosis and increase of glutathione and glutathione reduced/oxidized ratio in both cytoplasm and mitochondria, but a reduction of intracellular ROS. Glutamine supplementation was also associated with less S-glutathionylation and increased the activity of complex I, leading to less mitochondrial ROS formation. Furthermore, glutamine supplementation prevented from mitochondrial dysfunction presented as mitochondrial membrane potential and ATP levels and attenuated cytochrome c release into the cytosol and caspase-3 activation. We conclude that apoptosis induced by high glucose and hypoxia-reoxygenation was reduced by glutamine supplementation, via decreased oxidative stress and inactivation of the intrinsic apoptotic pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。