Streptogramin A derivatives as mitochondrial translation inhibitors to suppress glioblastoma stem cell growth

链霉菌素 A 衍生物作为线粒体翻译抑制剂抑制胶质母细胞瘤干细胞生长

阅读:8
作者:Denise Sighel, Giulia Battistini, Emanuele Filiberto Rosatti, Jacopo Vigna, Matteo Pavan, Romina Belli, Daniele Peroni, Federica Alessandrini, Sara Longhi, Michael Pancher, Joanna Rorbach, Stefano Moro, Alessandro Quattrone, Ines Mancini

Abstract

New therapeutic strategies for glioblastoma treatment, especially tackling the tumour's glioblastoma stem cell (GSC) component, are an urgent medical need. Recently, mitochondrial translation inhibition has been shown to affect GSC growth, clonogenicity, and self-renewal capability, therefore becoming an attractive therapeutic target. The combination of streptogramins B and A antibiotics quinupristin/dalfopristin (Q/D), which inhibits mitochondrial ribosome function, affects GSCs more effectively in vitro than the standard of care temozolomide. Here, docking calculations based on the cryo-EM structure of the Q/D-bound mitochondrial ribosome have been used to develop a series of streptogramin A derivatives. We obtained twenty-two new and known molecules starting from the dalfopristin and virginiamycin M1 scaffolds. A structure-activity relationship refinement was performed to evaluate the capability of these compounds to suppress GSC growth and inhibit mitochondrial translation, either alone or in combination with quinupristin. Finally, quantitative ultra HPLC-mass spectrometry allowed us to assess the cell penetration of some of these derivatives. Among all, the fluorine derivatives of dalfopristin and virginiamycin M1, (16R)-1e and (16R)-2e, respectively, and flopristin resulted in being more potent than the corresponding lead compounds and penetrating to a greater extent into the cells. We, therefore, propose these three compounds for further evaluation in vivo as antineoplastic agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。