Combining pharmacophore models derived from DNA-encoded chemical libraries with structure-based exploration to predict Tankyrase 1 inhibitors

将源自 DNA 编码化学库的药效团模型与基于结构的探索相结合,以预测 Tankyrase 1 抑制剂

阅读:7
作者:Alba L Montoya, Marta Glavatskikh, Brayden J Halverson, Lik Hang Yuen, Herwig Schüler, Dmitri Kireev, Raphael M Franzini

Abstract

DNA-encoded chemical libraries (DECLs) interrogate the interactions of a target of interest with vast numbers of molecules. DECLs hence provide abundant information about the chemical ligand space for therapeutic targets, and there is considerable interest in methods for exploiting DECL screening data to predict novel ligands. Here we introduce one such approach and demonstrate its feasibility using the cancer-related poly-(ADP-ribose)transferase tankyrase 1 (TNKS1) as a model target. First, DECL affinity selections resulted in structurally diverse TNKS1 inhibitors with high potency including compound 2 with an IC50 value of 0.8 nM. Additionally, TNKS1 hits from four DECLs were translated into pharmacophore models, which were exploited in combination with docking-based screening to identify TNKS1 ligand candidates in databases of commercially available compounds. This computational strategy afforded TNKS1 inhibitors that are outside the chemical space covered by the DECLs and yielded the drug-like lead compound 12 with an IC50 value of 22 nM. The study further provided insights in the reliability of screening data and the effect of library design on hit compounds. In particular, the study revealed that while in general DECL screening data are in good agreement with off-DNA ligand binding, unpredictable interactions of the DNA-attachment linker with the target protein contribute to the noise in the affinity selection data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。