Cortical Regulation of Nociception of the Trigeminal Nucleus Caudalis

三叉神经尾核痛觉的皮质调节

阅读:5
作者:Alberto Castro, Charles Raver, Ying Li, Olivia Uddin, David Rubin, Yadong Ji, Radi Masri, Asaf Keller

Abstract

Pain perception is strongly influenced by descending pathways from "higher" brain centers that regulate the activity of spinal circuits. In addition to the extensively studied descending system originating from the medulla, the neocortex provides dense anatomical projections that directly target neurons in the spinal cord and the spinal trigeminal nucleus caudalis (SpVc). Evidence exists that these corticotrigeminal pathways may modulate the processing of nociceptive inputs by SpVc, and regulate pain perception. We demonstrate here, with anatomical and optogenetic methods, and using both rats and mice (of both sexes), that corticotrigeminal axons densely innervate SpVc, where they target and directly activate inhibitory and excitatory neurons. Electrophysiological recordings reveal that stimulation of primary somatosensory cortex potently suppresses SpVc responses to noxious stimuli and produces behavioral hypoalgesia. These findings demonstrate that the corticotrigeminal pathway is a potent modulator of nociception and a potential target for interventions to alleviate chronic pain.SIGNIFICANCE STATEMENT Many chronic pain conditions are resistant to conventional therapy. Promising new approaches to pain management capitalize on the brain's own mechanisms for controlling pain perception. Here we demonstrate that cortical neurons directly innervate the brainstem to drive feedforward inhibition of nociceptive neurons. This corticotrigeminal pathway suppresses the activity of these neurons and produces analgesia. This corticotrigeminal pathway may constitute a therapeutic target for chronic pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。