Prophylactic melatonin significantly reduces Alzheimer's neuropathology and associated cognitive deficits independent of antioxidant pathways in AβPP(swe)/PS1 mice

预防性褪黑激素可显著降低 AβPP(swe)/PS1 小鼠的阿尔茨海默病神经病理学和相关认知缺陷,且不依赖于抗氧化途径

阅读:7
作者:G O'Neal-Moffitt, V Delic, P C Bradshaw, J Olcese

Background

Alzheimer's disease (AD) underlies dementia for millions of people worldwide, and its occurrence is set to double in the next 20 years. Currently, approved drugs for treating AD only marginally ameliorate cognitive deficits, and provide limited symptomatic relief, while newer substances under therapeutic development are potentially years away from benefiting patients. Melatonin (MEL) for insomnia has been proven safe with >15 years of over-the-counter access in the US. MEL exerts multiple complementary mechanisms of action against AD in animal models; thus it may be an excellent disease-modifying therapeutic. While presumed to provide neuroprotection via activation of known G-protein-coupled melatonin receptors (MTNRs), some data indicate MEL acts intracellularly to protect mitochondria and neurons by scavenging reactive oxygen species and reducing free radical formation. We examined whether genetic deletion of MTNRs abolishes MEL's neuroprotective actions in the AβPP(swe)/PSEN1dE9 mouse model of AD (2xAD). Beginning at 4 months of age, both AD and control mice either with or without both MTNRs were administered either MEL or vehicle in drinking water for 12 months.

Conclusions

These findings demonstrate that prophylactic MEL significantly reduces AD neuropathology and associated cognitive deficits in a manner that is independent of antioxidant pathways. Future identification of direct molecular targets for MEL action in the brain should open new vistas for development of better AD therapeutics.

Results

Behavioral and cognitive assessments of 15-month-old AD mice revealed receptor-dependent effects of MEL on spatial learning and memory (Barnes maze, Morris Water Maze), but receptor-independent neuroprotective actions of MEL on non-spatial cognitive performance (Novel Object Recognition Test). Similarly, amyloid plaque loads in hippocampus and frontal cortex, as well as plasma Aβ1-42 levels, were significantly reduced by MEL in a receptor-independent manner, in contrast to MEL's efficacy in reducing cortical antioxidant gene expression (Catalase, SOD1, Glutathione Peroxidase-1, Nrf2) only when receptors were present. Increased cytochrome c oxidase activity was seen in 16 mo AD mice as compared to non-AD control mice. This increase was completely prevented by MEL treatment of 2xAD/MTNR+ mice, but only partially prevented in 2xAD/MTNR- mice, consistent with mixed receptor-dependent and independent effects of MEL on this measure of mitochondrial function. Conclusions: These findings demonstrate that prophylactic MEL significantly reduces AD neuropathology and associated cognitive deficits in a manner that is independent of antioxidant pathways. Future identification of direct molecular targets for MEL action in the brain should open new vistas for development of better AD therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。