Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1β and TNF: implications for neuropathic pain

周围神经损伤后的功能恢复依赖于促炎细胞因子 IL-1β 和 TNF:对神经性疼痛的影响

阅读:6
作者:Sylvain Nadeau, Mohammed Filali, Ji Zhang, Bradley J Kerr, Serge Rivest, Denis Soulet, Yoichiro Iwakura, Juan Pablo de Rivero Vaccari, Robert W Keane, Steve Lacroix

Abstract

IL-1β and TNF are potential targets in the management of neuropathic pain after injury. However, the importance of the IL-1 and TNF systems for peripheral nerve regeneration and the mechanisms by which these cytokines mediate effects are to be fully elucidated. Here, we demonstrate that mRNA and protein levels of IL-1β and TNF are rapidly upregulated in the injured mouse sciatic nerve. Mice lacking both IL-1β and TNF, or both IL-1 type 1 receptor (IL-1R1) and TNF type 1 receptor (TNFR1), showed reduced nociceptive sensitivity (mechanical allodynia) compared with wild-type littermates after injury. Microinjecting recombinant IL-1β or TNF at the site of sciatic nerve injury in IL-1β- and TNF-knock-out mice restored mechanical pain thresholds back to levels observed in injured wild-type mice. Importantly, recovery of sciatic nerve function was impaired in IL-1β-, TNF-, and IL-1β/TNF-knock-out mice. Notably, the infiltration of neutrophils was almost completely prevented in the sciatic nerve distal stump of mice lacking both IL-1R1 and TNFR1. Systemic treatment of mice with an anti-Ly6G antibody to deplete neutrophils, cells that play an essential role in the genesis of neuropathic pain, did not affect recovery of neurological function and peripheral axon regeneration. Together, these results suggest that targeting specific IL-1β/TNF-dependent responses, such as neutrophil infiltration, is a better therapeutic strategy for treatment of neuropathic pain after peripheral nerve injury than complete blockage of cytokine production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。