Human iPSC-derived neural stem cells with ALDH5A1 mutation as a model of succinic semialdehyde dehydrogenase deficiency

具有 ALDH5A1 突变的人类 iPSC 衍生神经干细胞作为琥珀酸半醛脱氢酶缺乏症的模型

阅读:7
作者:Xiaodan Chen, Minzhi Peng, Yanna Cai, Chengcheng Zhou, Li Liu

Background

Succinic semialdehyde dehydrogenase deficiency (SSADH-D) is an autosomal recessive gamma-aminobutyric acid (GABA) metabolism disorder that can arise due to ALDH5A1 mutations, resulting in severe, progressive, untreatable neurodegeneration. SSADH-D is primarily studied using simplified models, such as HEK293 cells overexpressing genes of interest, but such overexpression can result in protein aggregation or pathway saturation that may not be representative of actual underlying disease phenotypes.

Conclusions

iPSCs represent a promising in vitro model for SSADH-D that can be used to study early central nervous system developmental alterations and pathogenic mechanisms.

Methods

We used a CRISPR/Cas9 approach to generate human iPSC cell lines bearing ALDH5A1 mutations. Through screening, two different mutant cell lines, NM_001080.3: c.727_735del (p.L243_S245del) and NM_001080.3: c.730_738del (p.A244_Q246del), were obtained. We induced iPSCs to neural stem cells and analyzed the characteristics of ALDH5A1 mutations in stem cells.

Results

The human iPSC and NSC cell lines presented typical stem cell-like morphology. We found changes in ALDH5A1 expression and GABA accumulation in the different cell lines. In addition, by analyzing the cDNA between the wild-type and the mutant cell lines, we found that the mutant cell lines had a splicing variant. Conclusions: iPSCs represent a promising in vitro model for SSADH-D that can be used to study early central nervous system developmental alterations and pathogenic mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。