Wolfram syndrome 1b mutation suppresses Mauthner-cell axon regeneration via ER stress signal pathway

Wolfram 综合征 1b 突变通过 ER 应激信号通路抑制 Mauthner 细胞轴突再生

阅读:5
作者:Zongyi Wang, Xinliang Wang, Lingyu Shi, Yuan Cai, Bing Hu

Abstract

Wolfram Syndrome (WS) is a fatal human inherited disease with symptoms of diabetes, vision decreasing, and neurodegeneration caused by mutations in the endoplasmic reticulum (ER)-resident protein WFS1. WFS1 has been reported to play an important role in glucose metabolism. However, the role of WFS1 in axonal regeneration in the central nervous system has so far remained elusive. Herein, we established a model of the wfs1b globally deficient zebrafish line. wfs1b deficiency severely impeded the Mauthner-cell (M-cell) axon regeneration, which was partly dependent on the ER stress response. The administration of ER stress inhibitor 4-Phenylbutyric acid (4-PBA) promoted M-cell axon regeneration in wfs1b-/- zebrafish larvae, while the ER stress activator Tunicamycin (TM) inhibited M-cell axon regeneration in wfs1b+/+ zebrafish larvae. Moreover, complementation of wfs1b at the single-cell level stimulated M-cell axon regeneration in the wfs1b-/- zebrafish larvae. Altogether, our results revealed that wfs1b promotes M-cell axon regeneration through the ER stress signal pathway and provide new evidence for a therapeutic target for WS and axon degeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。