Dendritic cells and M2 macrophage play an important role in suppression of Th2-mediated inflammation by adipose stem cells-derived extracellular vesicles

树突状细胞和 M2 巨噬细胞在脂肪干细胞衍生的细胞外囊泡抑制 Th2 介导的炎症中起重要作用

阅读:6
作者:Kyu-Sup Cho, Shin Ae Kang, Sung-Dong Kim, Sue-Jean Mun, Hak Sun Yu, Hwan-Jung Roh

Abstract

Although stem cell-derived extracellular vesicles (EVs) have been shown to facilitate regeneration of injured tissue, there is no report that evaluates the immune-modulating effect of stem cell-derived EVs on Th2-mediated inflammation. In this study, we evaluated the immunomodulatory effects of adipose stem cells (ASCs)-derived EVs on Th2-mediated inflammation induced by Aspergillus protease antigen in lung epithelial cells. The EVs were isolated from supernatant of ASCs and the diameters of EVs were measured by using dynamic light scattering. The mice primary lung epithelial cells and mouse lung epithelial cell line (MLE12) were pre-treated with 200 ng/ml of Aspergillus protease and then treated with 1 μg/ml of ASC-derived EVs. Real time PCR was performed to determine the expression levels of eotaxin, IL-25, TGF-β, and IL-10 mRNAs after EV treatment. To evaluate the role of EVs in macrophage polarization and dendritic cells (DCs) differentiation, in vitro bone marrow-derived macrophage and DCs stimulation assay was performed. EV treatment significantly decreased the expression of eotaxin and IL-25 and increased TGF-β and IL-10 in both lung epithelial cells. EV treatment significantly increased the expression of co-stimulatory molecules such as CD40, CD80, and CD 86 in immature DCs. Furthermore, EV treatment significantly enhanced the gene expression of M2 macrophage marker such as Arg1, CCL22, IL-10, and TGF-β. In conclusion, EVs of ASCs ameliorated Th2-mediated inflammation induced by Aspergillus protease antigen through the activation of dendritic cells and M2 macrophage, accompanied by down-regulation of eotaxin and IL-25, and up-regulation of TGF-β and IL-10 in mouse lung epithelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。