Zinc chelation and Klf9 knockdown cooperatively promote axon regeneration after optic nerve injury

锌螯合和 Klf9 敲低协同促进视神经损伤后轴突再生

阅读:5
作者:Ephraim F Trakhtenberg, Yiqing Li, Qian Feng, Janice Tso, Paul A Rosenberg, Jeffrey L Goldberg, Larry I Benowitz

Abstract

The inability of axons to regenerate over long-distances in the central nervous system (CNS) limits the recovery of sensory, motor, and cognitive functions after various CNS injuries and diseases. Although pre-clinical studies have identified a number of manipulations that stimulate some degree of axon growth after CNS damage, the extent of recovery remains quite limited, emphasizing the need for improved therapies. Here, we used traumatic injury to the mouse optic nerve as a model system to test the effects of combining several treatments that have recently been found to promote axon regeneration without the risks associated with manipulating known tumor suppressors or oncogenes. The treatments tested here include TPEN, a chelator of mobile (free) zinc (Zn2+); shRNA against the axon growth-suppressing transcription factor Klf9; and the atypical growth factor oncomodulin combined with a cAMP analog. Whereas some combinatorial treatments produced only marginally stronger effects than the individual treatments alone, co-treatment with TPEN and Klf9 knockdown had a substantially stronger effect on axon regeneration than either one alone. This combination also promoted a high level of cell survival at longer time points. Thus, Zn2+ chelation in combination with Klf9 suppression holds therapeutic potential for promoting axon regeneration after optic nerve injury, and may also be effective for treating other CNS injuries and diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。