Cyclin D1 gene ablation confers neuroprotection in traumatic brain injury

细胞周期蛋白 D1 基因消融对创伤性脑损伤具有神经保护作用

阅读:5
作者:Shruti V Kabadi, Bogdan A Stoica, David J Loane, Kimberly R Byrnes, Marie Hanscom, Rainier M Cabatbat, Ming T Tan, Alan I Faden

Abstract

Cell cycle activation (CCA) is one of the principal secondary injury mechanisms following brain trauma, and it leads to neuronal cell death, microglial activation, and neurological dysfunction. Cyclin D1 (CD1) is a key modulator of CCA and is upregulated in neurons and microglia following traumatic brain injury (TBI). In this study we subjected CD1-wild-type (CD1(+/+)) and knockout (CD1(-/-)) mice to controlled cortical impact (CCI) injury to evaluate the role of CD1 in post-traumatic neurodegeneration and neuroinflammation. As early as 24 h post-injury, CD1(+/+) mice showed markers of CCA in the injured hemisphere, including increased CD1, E2F1, and proliferating cell nuclear antigen (PCNA), as well as increased Fluoro-Jade B staining, indicating neuronal degeneration. Progressive neuronal loss in the hippocampus was observed through 21 days post-injury in these mice, which correlated with a decline in cognitive function. Microglial activation in the injured hemisphere peaked at 7 days post-injury, with sustained increases at 21 days. In contrast, CD1(-/-) mice showed reduced CCA and neurodegeneration at 24 h, as well as improved cognitive function, attenuated hippocampal neuronal cell loss, decreased lesion volume, and cortical microglial activation at 21 days post-injury. These findings indicate that CD1-dependent CCA plays a significant role in the neuroinflammation, progressive neurodegeneration, and related neurological dysfunction resulting from TBI. Our results further substantiate the proposed role of CCA in post-traumatic secondary injury, and suggest that inhibition of CD1 may be a key therapeutic target for TBI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。