Steric Inhibition of 5' UTR Regulatory Elements Results in Upregulation of Human CFTR

5' UTR 调控元件的空间抑制导致人类 CFTR 的上调

阅读:4
作者:Shruti Sasaki, Rachel Sun, Huynh-Hoa Bui, Jeff R Crosby, Brett P Monia, Shuling Guo

Abstract

Cystic fibrosis (CF) is an autosomal recessive monogenic disease caused by mutations in the CFTR gene. Therapeutic approaches that are focused on correcting CFTR protein face the challenge of the heterogeneity in CFTR mutations and resulting defects. Thus, while several small molecules directed at CFTR show benefit in the clinic for subsets of CF patients, these drugs cannot treat all CF patients. Additionally, the clinical benefit from treatment with these modulators could be enhanced with novel therapies. To address this unmet need, we utilized an approach to increase CFTR protein levels through antisense oligonucleotide (ASO)-mediated steric inhibition of 5' UTR regulatory elements. We identified ASOs to upregulate CFTR protein expression and confirmed the regulatory role of the sites amenable to ASO-mediated upregulation. Two ASOs were investigated further, and both increased CFTR protein expression and function in cell lines and primary human bronchial epithelial cells with distinct CF genotypes. ASO treatment further increased CFTR function in almost all CF genotypes tested on top of treatment with the FDA approved drug Symdeko (ivacaftor and tezacaftor). Thus, we present a novel approach to CFTR therapeutic intervention, through ASO-mediated modulation of translation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。