MAP7 interacts with RC3H1 and cooperatively regulate cell-cycle progression of cervical cancer cells via activating the NF-κB signaling

MAP7 与 RC3H1 相互作用并通过激活 NF-κB 信号传导协同调控宫颈癌细胞的细胞周期进程

阅读:6
作者:Rong Zhang, Lei Li, Lingli Chen, Yuping Suo, Jingjing Fan, Suyu Zhang, Yulan Wang, Shenxiang Gao, Yingmei Wang

Abstract

Ensconsin is encoded by the MAP7 gene and belongs to the microtubule-associated proteins. This study aimed to explore its functional roles and partners in cell-cycle progression in cervical cancer. Data from the Cancer Genome Atlas-Cervical & Endocervical Cancer (TCGA-CESC) and the Genotype-Tissue Expression project were used for bioinformatic analysis. SiHa cells were used for in-vitro and in-vivo analysis. Co-immunoprecipitation (Co-IP) assay was conducted to explore the proteins interacted with MAP7. Results showed that MAP7 mRNA expression might serve as an independent biomarker of shorter survival. MAP7 overexpression elevated cyclin D1/cyclin B1 expression, facilitated cell-cycle progression and promoted SiHa cell growth in a xenograft tumor model. Co-IP experiments confirmed a novel interaction between MAP7 and RC3H1. Knockdown of either RC3H1 or MAP7 significantly attenuated cyclin D1/cyclin B1 upregulation, and cell-cycle progression induced by the other partner. MAP7 overexpression led to increased expression of P-IKK (Ser176/177) and P-p65 (Ser536). RC3H1 inhibition abrogated MAP7 induced upregulation of P-IKK and P-p65. Data in TCGA-CESC showed that MAP7 expression was positively correlated with its copy number segments, but was negatively correlated with the methylation level of three CpG sites within the gene locus. Demethylation treatment by 5-Aza-dC elevated both MAP7 mRNA and protein expression in a dose-dependent manner. In conclusion, this study revealed a novel interaction between MAP7 and RC3H1 in cervical cancer cells, which cooperatively enhanced cyclin D1/cyclin B1 expression and facilitated cell-cycle progression. These effects were at least partly mediated by activated canonical IKK/NF-kB signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。