Increased sensitivity to kindling in mice lacking TSP1

缺乏 TSP1 的小鼠对点燃的敏感性增加

阅读:5
作者:D Mendus, E K Rankin-Gee, M Mustapha, B E Porter

Abstract

The development of a hyperexcitable neuronal network is thought to be a critical event in epilepsy. Thrombospondins (TSPs) regulate synaptogenesis by binding the neuronal α2δ subunit of the voltage-gated calcium channel. TSPs regulate synapse formation during development and in the mature brain following injury. It is unclear if TSPs are involved in hyperexcitability that contributes to the development of epilepsy. Here we explore the development of epilepsy using a pentylenetetrazole (PTZ) kindling model in mice lacking TSP1 and TSP2. Unexpectedly, we found increased sensitivity to PTZ kindling in mice lacking TSP1, while mice lacking TSP2 kindled similar to wild-type. We found that the increased seizure susceptibility in the TSP1 knockout (KO) mice was not due to a compensatory increase in TSP2 mRNA as TSP1/2 KO mice were sensitive to PTZ, similar to the TSP1 KO mice. Furthermore, there were similar levels of TGF-B signal activation during kindling in the TSP1 KO mice compared to wild-type. We observed decreased expression of voltage-dependent calcium channel subunit CACNA2D1 mRNA in TSP1, TSP2, and TSP1/2 KO mice. Decreased CACNA2D2 mRNA was only detected in mice that lacked TSP1 and α2δ-1/2 protein levels in the cortex were lower in the TSP 1/2 KO mice. CACNA2D2 knockout mice have spontaneous seizures and increased PTZ seizure susceptibility. Here we report similar findings, TSP1, and TSP1/2 KO mice have low levels of CACNA2D2 mRNA expression and α2δ-1/2 receptor level in the cortex, and are more susceptible to seizures. CACNA2D2 mutations in mice and humans can cause epilepsy. Our data suggest TSP1 in particular may control CACNA2D2 levels and could be a modifier of seizure susceptibility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。