Extraction and Hypolipidemic Activity of Low Molecular Weight Polysaccharides Isolated from Rosa Laevigata Fruits

金樱子果实低分子量多糖的提取及降血脂活性研究

阅读:5
作者:Xuejiao Zhang, Yihong Hu, Chenzhong Jin, Weiguo Wu

Abstract

Three novel low molecular weight polysaccharides (RLP-1a, RLP-2a, and RLP-3a) with 9004, 8761, and 7571 Da were first obtained by purifying the crude polysaccharides from the fruits of a traditional Chinese medicinal herb Rosae Laevigatae. The conditions for polysaccharides from the R. Laevigatae fruit (RLP) extraction were optimized by the response surface methodology, and the optimal conditions were as follows: extraction temperature, 93°C; extraction time, 2.8 h; water to raw material ratio, 22; extraction frequency, 3. Structural characterization showed that RLP-1a consisted of rhamnose, arabinose, xylose, glucose, and galactose with the ratio of 3.14 : 8.21 : 1 : 1.37 : 4.90, whereas RLP-2a was composed of rhamnose, mannose, glucose, and galactose with the ratio of 1.70 : 1 : 93.59 : 2.73, and RLP-3a was composed of rhamnose, arabinose, xylose, mannose, glucose, and galactose with the ratio of 6.04 : 26.51 : 2.05 : 1 : 3.17 : 31.77. The NMR analyses revealed that RLP-1a, RLP-2a, and RLP-3a contained 6, 4, and 6 types of glycosidic linkages, respectively. RLP-1a and RLP-3a exhibited distinct antioxidant abilities on the superoxide anions, 1,1-diphenyl-2-picrylhydrazyl (DPPH), and hydroxyl radicals in vitro. RLPs could decrease the serum lipid levels, elevate the serum high-density lipoprotein cholesterol levels, enhance the antioxidant enzymes levels, and upregulate of FADS2, ACOX3, and SCD-1 which involved in the lipid metabolic processes and oxidative stress in the high-fat diet-induced rats. These results suggested that RLPs ameliorated the high-fat diet- (HFD-) induced lipid metabolism disturbance in the rat liver through the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Low molecular weight polysaccharides of RLP could be served as a novel potential functional food for improving hyperlipidemia and liver oxidative stress responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。