Cortistatin prevents glucocorticoid-associated osteonecrosis of the femoral head via the GHSR1a/Akt pathway

皮质抑素通过 GHSR1a/Akt 通路预防糖皮质激素相关的股骨头坏死

阅读:5
作者:Yuan Gao #, Yunhao You #, Pengfei Zhang #, Yang Yu #, Zhaoning Xu, Hui Wei, Zhicheng Liu, Ruixuan Yu, Gaoxin Jin, Hao Wang, Shuai Zhang, Yuhua Li, Weiwei Li

Abstract

Long-term use of glucocorticoids (GCs) is known to be a predominant cause of osteonecrosis of the femoral head (ONFH). Moreover, GCs can mediate apoptosis of various cell types by exaggerating oxidative stress. We have previously found that Cortistatin (CST) antagonizes oxidative stress and improves cell apoptosis in several conditions. In this study, we detected that the CST expression levels were diminished in patients with ONFH compared with femoral neck fracture (FNF). In addition, a GC-induced rat ONFH model was established, which impaired bone quality in the femoral head. Then, administration of CST attenuated these ONFH phenotypes. Furthermore, osteoblast and endothelial cells were cultured and stimulated with dexamethasone (Dex) in the presence or absence of recombinant CST. As a result, Dex induced impaired anabolic metabolism of osteoblasts and suppressed tube formation in endothelial cells, while additional treatment with CST reversed this damage to the cells. Moreover, blocking GHSR1a, a well-accepted receptor of CST, or blocking the AKT signaling pathway largely abolished the protective function of CST in Dex-induced disorder of the cells. Taken together, we indicate that CST has the capability to prevent GC-induced apoptosis and metabolic disorder of osteoblasts in the pathogenesis of ONFH via the GHSR1a/AKT signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。