Effects of Nt-truncation and coexpression of isolated Nt domains on the membrane trafficking of electroneutral Na+/HCO3- cotransporters

Nt 截断和孤立 Nt 结构域共表达对电中性 Na+/HCO3- 共转运蛋白膜运输的影响

阅读:4
作者:Deng-Ke Wang, Ying Liu, Evan J Myers, Yi-Min Guo, Zhang-Dong Xie, De-Zhi Jiang, Jia-Min Li, Jichun Yang, Mugen Liu, Mark D Parker, Li-Ming Chen

Abstract

The SLC4 genes are all capable of producing multiple variants by alternative splicing or using alternative promoters. The physiological consequences of such diversity are of great interest to investigators. Here, we identified two novel variants of the electroneutral Na(+)/HCO3- cotransporter NBCn1, one full-length starting with "MIPL" and the other Nt-truncated starting with "MDEL". Moreover, we identified a new promoter of Slc4a10 encoding NBCn2 and a novel type of Nt-truncated NBCn2 starting with "MHAN". When heterologously expressed, the new NBCn1 variants were well localized to the plasma membrane and exhibited characteristic NBCn1 activity. However, MHAN-NBCn2 was poorly localized on the plasma membrane. By deletion mutations, we identified the Nt regions important for the surface localization of NBCn2. Interestingly, coexpressing the full-length NBCn2 greatly enhances the surface abundance of the Nt-truncated NBCn2. Co-immunoprecipitation and bimolecular fluorescence complementation studies showed that the full-length and Nt-truncated NBCn2 interact with each other to form heterodimers in neuro-2A cells. Finally, we showed that the isolated Nt domain interacts with and enhances the surface abundance of the Nt-truncated NBCn2. The present study expands our knowledge of the NBCn1 and NBCn2 transcriptome, and provides insights into how the Nt domain could affect transporter function by regulating its membrane trafficking.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。