Inhibition of angiogenesis by arsenic trioxide via TSP-1-TGF-β1-CTGF-VEGF functional module in rheumatoid arthritis

三氧化二砷通过TSP-1-TGF-β1-CTGF-VEGF功能模块抑制类风湿关节炎血管生成

阅读:5
作者:Juan Zhang, Chunling Li, Yining Zheng, Zhiguo Lin, Yue Zhang, Zhiyi Zhang

Abstract

Angiogenesis is a critical factor for rheumatoid arthritis (RA). Although anti-TNF biologics work effectively on some RA patients, concerns have been raised about the possible increased development of malignancies alongside such treatments. Arsenic trioxide (As2O3) has attracted worldwide attention and has been reported to treat some cancers. However, the effects of As2O3 on angiogenesis in the RA synovium remain unclear. Here, we report a systematic increased expression of TSP-1, TGF-β1, CTGF and VEGF in supernatants of a RA fibroblast-like synoviocytes (RA-FLS) and human dermal microvascular endothelial cells (HDMECs) co-culture compared with those from a normal human fibroblast-like synoviocytes (NH-FLS) and HDMECs co-culture. This increased expression may up-regulate endothelial tube formation and transwell migration, as well as microvessel sprouting in ex vivo aortic ring assay. These networked angiogenic factors mainly form a functional module regulating angiogenesis in the RA synovium. We show that As2O3 inhibits angiogenesis in the collagen-induced arthritis (CIA) synovium and consequently arthritis severity via significant suppression of TSP-1, TGF-β1, CTGF and VEGF expression in the CIA synovium, plus in the RA-FLS and HDMECs co-culture as well as NH-FLS and HDMECs co-culture system along with the presence or absence of TNF-α treatment. Thus As2O3 has a significant anti-angiogenesis effect on the RA-FLS and CIA synovium via its inhibition of the RA angiogenic functional module of TSP-1, TGF-β1, CTGF and VEGF and may have a potential for treating RA beyond cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。