Conclusion
We for the first time showed that the DNA methylation state of the IRX1/2 genes of hiPSCs is a predictive biomarker of their potential for neural differentiation. The predictive markers for neural differentiation efficiency identified in this study may be useful for the selection of suitable undifferentiated hiPSCs prior to differentiation induction.
Methods
We obtained 32 hiPSC lines and their comprehensive DNA methylation data using the Infinium MethylationEPIC BeadChip. To assess the neural differentiation efficiency of these hiPSCs, we measured the percentage of neural stem cells on day 7 of induction. Using the DNA methylation data of undifferentiated hiPSCs and their measured differentiation efficiency into neural stem cells as the set of data, and HSIC Lasso, a machine learning-based nonlinear feature selection method, we attempted to identify neural differentiation-associated differentially methylated sites.
Results
Epigenome-wide unsupervised clustering cannot distinguish hiPSCs with varying differentiation efficiencies. In contrast, HSIC Lasso identified 62 CpG sites that could explain the neural differentiation efficiency of hiPSCs. Features selected by HSIC Lasso were particularly enriched within 3 Mbp of chromosome 5, harboring IRX1, IRX2, and C5orf38 genes. Within this region, DNA methylation rates were correlated with neural differentiation efficiency and were negatively correlated with gene expression of the IRX1/2 genes, particularly in female hiPSCs. In addition, forced expression of the IRX1/2 impaired the neural differentiation ability of hiPSCs in both sexes.
