Sub-ppm Formaldehyde Detection by n- n TiO2@SnO2 Nanocomposites

利用 n- n TiO2@SnO2 纳米复合材料检测亚 ppm 级甲醛

阅读:5
作者:Abulkosim Nasriddinov, Marina Rumyantseva, Artem Marikutsa, Alexander Gaskov, Jae-Hyoung Lee, Jae-Hun Kim, Jin-Young Kim, Sang Sub Kim, Hyoun Woo Kim

Abstract

Formaldehyde (HCHO) is an important indicator of indoor air quality and one of the markers for detecting lung cancer. Both medical and air quality applications require the detection of formaldehyde in the sub-ppm range. Nanocomposites SnO2/TiO2 are promising candidates for HCHO detection, both in dark conditions and under UV illumination. Nanocomposites TiO2@SnO2 were synthesized by ALD method using nanocrystalline SnO2 powder as a substrate for TiO2 layer growth. The microstructure and composition of the samples were characterized by ICP-MS, TEM, XRD and Raman spectroscopy methods. The active surface sites were investigated using FTIR and TPR-H2 methods. The mechanism of formaldehyde oxidation on the surface of semiconductor oxides was studied by in situ DRIFTS method. The sensor properties of nanocrystalline SnO2 and TiO2@SnO2 nanocomposites toward formaldehyde (0.06-0.6 ppm) were studied by in situ electrical conductivity measurements in dark conditions and under periodic UV illumination at 50-300 °C. Nanocomposites TiO2@SnO2 exhibit a higher sensor signal than SnO2 and a decrease in the optimal measurement temperature by 50 °C. This result is explained based on the model considering the formation of n-n heterocontact at the SnO2/TiO2 interface. UV illumination leads to a decrease in sensor response compared with that obtained in dark conditions because of the photodesorption of oxygen involved in the oxidation of formaldehyde.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。