Ganaxolone enhances microglial clearance activity and promotes remyelination in focal demyelination in the corpus callosum of ovariectomized rats

加奈索酮增强小胶质细胞清除活性并促进卵巢切除大鼠胼胝体局灶性脱髓鞘的髓鞘再生

阅读:5
作者:Abdeslam Mouihate, Samah Kalakh

Aim

Experimental studies have shown that the progesterone metabolite, allopregnanolone, is endowed with promyelinating effects. The mechanisms underlying these promyelinating effects are not well understood. Therefore, we explored the impact of allopregnanolone's synthetic analogue, ganaxolone, on remyelination and microglial activation following focal demyelination in the corpus callosum of ovariectomized rats.

Conclusion

Ganaxolone promotes remyelination in response to focal demyelination of the corpus callosum of ovariectomized rats. This effect is, at least in part, mediated by enhancing microglial clearance of myelin debris, which creates a conducive environment for a successful remyelination process.

Methods

Ovariectomized adult Sprague Dawley rats received a stereotaxic injection of 2 µL of 1% lysolecithin solution in the corpus callosum followed by daily injections of either ganaxolone (intraperitoneal injection [i.p.], 2.5 mg/kg) or vehicle. The demyelination lesion was assessed 3 and 7 days postdemyelination insult using Luxol fast blue staining and transmission electron microscopy. The expression levels of myelin proteins (MBP, MAG, MOG, CNPase) were explored using Western blot. The inflammatory response and clearance of damaged myelin were evaluated using immunofluorescent staining (Iba1, dMBP, GFAP) and multiplex enzyme-linked immunosorbent assay (IL-1β, TNF-α, IL-4, IL-10, IL-6).

Results

Systemic administration of ganaxolone promoted remyelination of lysolecithin-induced demyelination, upregulated the expression of major myelin proteins, and enhanced microglial clearance of damaged myelin. Astrocytosis, as well as locally produced pro- and antiinflammatory cytokines, was not affected by ganaxolone treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。