A pharmacokinetic-pharmacodynamic model for the MET tyrosine kinase inhibitor, savolitinib, to explore target inhibition requirements for anti-tumour activity

MET 酪氨酸激酶抑制剂沃利替尼的药代动力学-药效学模型,用于探索抗肿瘤活性的靶标抑制要求

阅读:5
作者:Rhys D O Jones, Mike Grondine, Alexandra Borodovsky, Maryann San Martin, Michelle DuPont, Celina D'Cruz, Alwin Schuller, Ryan Henry, Evan Barry, Lillian Castriotta, Rana Anjum, Klas Petersson, Tarjinder Sahota, Ghada F Ahmed

Background and purpose

Savolitinib (AZD6094, HMPL-504, volitinib) is an oral, potent, and highly MET receptor TK inhibitor. This series of studies aimed to develop a pharmacokinetic-pharmacodynamic (PK/PD) model to link inhibition of MET phosphorylation (pMET) by savolitinib with anti-tumour activity. Experimental approach: Cell line-derived xenograft (CDX) experiments using human lung cancer (EBC-1) and gastric cancer (MKN-45) cells were conducted in athymic nude mice using a variety of doses and schedules of savolitinib. Tumour pMET changes and growth inhibition were calculated after 28 days. Population PK/PD techniques were used to construct a PK/PD model for savolitinib. Key

Purpose

Savolitinib (AZD6094, HMPL-504, volitinib) is an oral, potent, and highly MET receptor TK inhibitor. This series of studies aimed to develop a pharmacokinetic-pharmacodynamic (PK/PD) model to link inhibition of MET phosphorylation (pMET) by savolitinib with anti-tumour activity. Experimental approach: Cell line-derived xenograft (CDX) experiments using human lung cancer (EBC-1) and gastric cancer (MKN-45) cells were conducted in athymic nude mice using a variety of doses and schedules of savolitinib. Tumour pMET changes and growth inhibition were calculated after 28 days. Population PK/PD techniques were used to construct a PK/PD model for savolitinib. Key

Results

Savolitinib showed dose- and dose frequency-dependent anti-tumour activity in the CDX models, with more frequent, lower dosing schedules (e.g., twice daily) being more effective than intermittent, higher dosing schedules (e.g., 4 days on/3 days off or 2 days on/5 days off). There was a clear exposure-response relationship, with maximal suppression of pMET of >90%. Data from additional CDX and patient-derived xenograft (PDX) models overlapped, allowing calculation of a single EC50 of 0.38 ng·ml-1 . Tumour growth modelling demonstrated that prolonged, high levels of pMET inhibition (>90%) were required for tumour stasis and regression in the models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。