Proto-oncogene tyrosine-protein kinase SRC (Src) inhibition in microglia relieves neuroinflammation in neuropathic pain mouse models

小胶质细胞中的原癌基因酪氨酸蛋白激酶 SRC (Src) 抑制可缓解神经性疼痛小鼠模型中的神经炎症

阅读:6
作者:Yuanxing Cai, Jing Xu, Qinghao Cheng

Abstract

Chronic neuroinflammation is an important factor in the development of neuropathic pain (NP). Excess microglia activation releases a mass of pro-inflammatory cytokines during neuroinflammation process, leading to a constant painful irritation of the sensory nerve. Src belongs to a non-receptor tyrosine kinase associated with sarcoma, whereas the role of Src in neuropathic pain is controversial. We designed to testify the inflammation-regulatory role of Src in the lipopolysaccharide (LPS)-induced BV2 microglia line and the mouse model of neuropathic pain by partial sciatic nerve ligation (PNL). In BV2 microglia, Src expression was inhibited using a Src family kinase inhibitor PP2 after LPS induced inflammatory response. In vivo, the neuropathic pain in mice was induced by PNL surgery and then treated with PP2. The neuroinflammation level in vitro was detected by enzyme-linked immunosorbent assay (ELISA), immunofluorescence (IF), trans-well and Western blotting (WB) assays, in vivo was examined in PNL mice using immunohistochemistry (IHC) and IF. Finally, mechanical allodynia and thermal hyperalgesia assays were used to access the functional evaluation. Inhibition of Src was decreased microglial inflammation and migration after LPS stimuli. Mechanistically, the expression of nuclear factor kappa B (NF-κB) pathway decreased after Src inhibition. The data in vivo showed that the decrease expression of Src reduced neuroinflammation and the amount of microglia in spinal dorsal horn (SDH), the mechanical allodynia of mice thereby attenuated after Src inhibition. These results indicated that the inhibition of Src took a protective effect in neuropathic pain mouse models via reducing microglia-induced neuroinflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。