Identifying kinase dependency in cancer cells by integrating high-throughput drug screening and kinase inhibition data

通过整合高通量药物筛选和激酶抑制数据识别癌细胞中的激酶依赖性

阅读:8
作者:Karen A Ryall, Jimin Shin, Minjae Yoo, Trista K Hinz, Jihye Kim, Jaewoo Kang, Lynn E Heasley, Aik Choon Tan

Results

We developed Kinase Addiction Ranker (KAR), an algorithm that integrates high-throughput drug screening data, comprehensive kinase inhibition data and gene expression profiles to identify kinase dependency in cancer cells. We applied KAR to predict kinase dependency of 21 lung cancer cell lines and 151 leukemia patient samples using published datasets. We experimentally validated KAR predictions of FGFR and MTOR dependence in lung cancer cell line H1581, showing synergistic reduction in proliferation after combining ponatinib and AZD8055. Availability and implementation: KAR can be downloaded as a Python function or a MATLAB script along with example inputs and outputs at: http://tanlab.ucdenver.edu/KAR/. Contact: aikchoon.tan@ucdenver.edu.

Supplementary Information

Supplementary data are available at Bioinformatics online.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。