Differential cerebellar GABAA receptor expression in mice with mutations in CaV2.1 (P/Q-type) calcium channels

CaV2.1(P/Q 型)钙通道突变小鼠小脑 GABAA 受体表达差异

阅读:6
作者:S Kaja, A J Payne, E Ø Nielsen, C L Thompson, A M J M van den Maagdenberg, P Koulen, T P Snutch

Abstract

Ataxia is the predominant clinical manifestation of cerebellar dysfunction. Mutations in the human CACNA1A gene, encoding the pore-forming α1 subunit of CaV2.1 (P/Q-type) calcium channels, underlie several neurological disorders, including Episodic Ataxia type 2 and Familial Hemiplegic Migraine type 1 (FHM1). Several mouse mutants exist that harbor mutations in the orthologous Cacna1a gene. The spontaneous Cacna1a mutants Rolling Nagoya (tg(rol)), Tottering (tg) and Leaner (tg(ln)) mice exhibit behavioral motor phenotypes, including ataxia. Transgenic knock-in (KI) mouse strains with the human FHM1 R192Q and S218L missense mutations have been generated. R192Q KI mice are non-ataxic, whereas S218L KI mice display a complex behavioral phenotype that includes cerebellar ataxia. Given the dependence of γ-aminobutyric acid type A (GABAA) receptor subunit functioning on localized calcium currents, and the functional link between GABAergic inhibition and ataxia, we hypothesized that cerebellar GABAA receptor expression is differentially affected in Cacna1a mutants and contributes to the ataxic phenotype. Herein we quantified functional GABAA receptors and pharmacologically dissociated cerebellar GABAA receptors in several Cacna1a mutants. We did not identify differences in the expression of GABAA receptor subunits or in the number of functional GABAA receptors in the non-ataxic R192Q KI strain. In contrast, tg(rol) mice had a ∼15% decrease in the number of functional GABAA receptors, whereas S218L KI mice showed a ∼29% increase. Our data suggest that differential changes in cerebellar GABAA receptor expression profile may contribute to the neurological phenotype of cerebellar ataxia and that targeting GABAA receptors might represent a feasible complementary strategy to treat cerebellar ataxia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。