Three-dimensional spheroids of dedifferentiated fat cells enhance bone regeneration

去分化脂肪细胞的三维球体增强骨再生

阅读:5
作者:Tsukasa Yanagi, Hiroshi Kajiya, Seiichi Fujisaki, Munehisa Maeshiba, Ayako Yanagi-S, Nana Yamamoto-M, Kae Kakura, Hirofumi Kido, Jun Ohno

Conclusions

Compared with 2D DFAT cells, 3D DFAT spheroid cells promote osteoblast differentiation and new bone formation via canonical Smad 1/5 signaling pathways. These results indicate that transplantation of DFAT cells from 3D spheroids, but not 2D monolayers, accelerates bone healing.

Methods

We compared the in vitro osteogenic potential of rat DFAT cells cultured under osteogenic conditions in 3D spheroids with that in 2D monolayers. Furthermore, to elucidate the ability of 3D spheroid DFAT cells to promote bone healing, we examined the in vivo osteogenic potential of transplanting DFAT cells from 3D spheroids or 2D monolayers into a rat calvarial defect model.

Results

Osteoblast differentiation stimulated by bone morphogenetic protein-2 (BMP-2) or osteogenesis-inducing medium upregulated osteogenesis-related molecules in 3D spheroid DFAT cells compared with 2D monolayer DFAT cells. BMP-2 activated phosphorylation in the canonical Smad 1/5 pathways in 3D spheroid DFAT cells but phosphorylated ERK1/2 and Smad2 in 2D monolayer DFAT cells. Regardless of osteogenic stimulation, the transplantation of 3D DFAT spheroid cells into rat calvarial defects promoted new bone formation at a greater extent than that of 2D DFAT cells. Conclusions: Compared with 2D DFAT cells, 3D DFAT spheroid cells promote osteoblast differentiation and new bone formation via canonical Smad 1/5 signaling pathways. These results indicate that transplantation of DFAT cells from 3D spheroids, but not 2D monolayers, accelerates bone healing.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。