Fiber-modified hexon-chimeric oncolytic adenovirus targeting cancer associated fibroblasts inhibits tumor growth in gastric carcinoma

针对癌症相关成纤维细胞的纤维修饰六邻体嵌合溶瘤腺病毒抑制胃癌肿瘤生长

阅读:6
作者:Tao Pang, Xinghua Wang, Jun Gao, Wei Chen, Xiao Jun Shen, Ming Ming Nie, Tianhang Luo, Kai Yin, Guoen Fang, Kai Xuan Wang, Xu Chao Xue

Conclusions

The fiber-modified hexon-chimeric recombinant oncolytic adenovirus targeting CAFs can relatively specifically kill gastric CAFs and inhibit GC cells growth in vivo.

Methods

Based on the construction of the recombinant oncolytic adenoviruses pRCAdHVR48-SDF1p-Ad/EGFP (Ad, as control) with the E1A gene transcription regulated by stromal-derived factor 1 (SDF1) promoter and the hexon replaced by hexon-chimeric (H5HVR48) gene, three fiber-modified hexon-chimeric oncolytic adenovirus through the modification fiber protein by insertion of different short peptides specifically binding to fibroblast activation protein (FAP), including pRCAdHVR48-SDF1p-FAP-P9/EGFP (P9), pRCAdHVR48-SDF1p-FAP-P9-4C/EGFP (P9-4C), pRCAdHVR48-SDF1p-FAP-GP/EGFP (GP), and their corresponding replication-defective adenovirus in parallel were reconstructed. Then the reproduction, infectivity and killing ability of the four above recombinant adenoviruses were evaluated in gastric CAFs compared with gastric para-mucosa fibroblasts (GPFs) and neonatal human foreskin fibroblasts (BJ). Furthermore, transplantation tumor mice model of GC was established, and then treated by the four above recombinant adenoviruses. Tumor size and tumor growth inhibitory rates were calculated, and histomorphology by HE staining and hexon expressions by immunohistochemistry were evaluated in tumor tissues. Conclusions: The fiber-modified hexon-chimeric recombinant oncolytic adenovirus targeting CAFs can relatively specifically kill gastric CAFs and inhibit GC cells growth in vivo.

Objective

To evaluate the effects of fiber-modified hexon-chimeric recombinant oncolytic adenovirus targeting cancer associated fibroblasts (CAFs) on the gastric CAFs and the transplantation tumor mice model of gastric carcinoma (GC).

Results

Compared with BJ cells and GPFs, the reproduction and infectivity of P9, P9-4C or GP adenoviruses were markedly higher in gastric CAFs. In addition, P9, P9-4C or GP had a significantly relatively more killing effect on gastric CAFs compared with GPFs, and have less oncolytic effect in BJ cells. Furthermore, in transplantation tumor mice model of GC we found significantly higher hexon protein expression in tumor tissues, more decreasing tumor growth and increasing inhibitory rates after treatment of P9, P9-4C or GP adenoviruses compared with Ad adenovirus. Materials and methods: Based on the construction of the recombinant oncolytic adenoviruses pRCAdHVR48-SDF1p-Ad/EGFP (Ad, as control) with the E1A gene transcription regulated by stromal-derived factor 1 (SDF1) promoter and the hexon replaced by hexon-chimeric (H5HVR48) gene, three fiber-modified hexon-chimeric oncolytic adenovirus through the modification fiber protein by insertion of different short peptides specifically binding to fibroblast activation protein (FAP), including pRCAdHVR48-SDF1p-FAP-P9/EGFP (P9), pRCAdHVR48-SDF1p-FAP-P9-4C/EGFP (P9-4C), pRCAdHVR48-SDF1p-FAP-GP/EGFP (GP), and their corresponding replication-defective adenovirus in parallel were reconstructed. Then the reproduction, infectivity and killing ability of the four above recombinant adenoviruses were evaluated in gastric CAFs compared with gastric para-mucosa fibroblasts (GPFs) and neonatal human foreskin fibroblasts (BJ). Furthermore, transplantation tumor mice model of GC was established, and then treated by the four above recombinant adenoviruses. Tumor size and tumor growth inhibitory rates were calculated, and histomorphology by HE staining and hexon expressions by immunohistochemistry were evaluated in tumor tissues. Conclusions: The fiber-modified hexon-chimeric recombinant oncolytic adenovirus targeting CAFs can relatively specifically kill gastric CAFs and inhibit GC cells growth in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。