Use of Physiologically Based Pharmacokinetic Modeling to Predict Human Gut Microbial Conversion of Daidzein to S-Equol

使用基于生理的药代动力学模型预测人类肠道微生物将大豆黄酮转化为 S-雌马酚

阅读:5
作者:Qianrui Wang, Bert Spenkelink, Rungnapa Boonpawa, Ivonne M C M Rietjens

Abstract

A physiologically based pharmacokinetic (PBPK) model was developed for daidzein and its metabolite S-equol. Anaerobic in vitro incubations of pooled fecal samples from S-equol producers and nonproducers allowed definition of the kinetic constants. PBPK model-based predictions for the maximum daidzein plasma concentration (Cmax) were comparable to literature data. The predictions also revealed that the Cmax of S-equol in producers was only up to 0.22% that of daidzein, indicating that despite its higher estrogenicity, S-equol is likely to contribute to the overall estrogenicity upon human daidzein exposure to a only limited extent. An interspecies comparison between humans and rats revealed that the catalytic efficiency for S-equol formation in rats was 210-fold higher than that of human S-equol producers. The described in vitro-in silico strategy provides a proof-of-principle on how to include microbial metabolism in humans in PBPK modeling as part of the development of new approach methodologies (NAMs).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。