Inactivation of GIRK channels weakens the pre- and postsynaptic inhibitory activity in dorsal raphe neurons

GIRK 通道失活会削弱背缝神经元的突触前和突触后抑制活性

阅读:15
作者:Nerea Llamosas, Luisa Ugedo, Maria Torrecilla

Abstract

The serotonergic tone of the dorsal raphe (DR) is regulated by 5-HT1A receptors, which negatively control serotonergic activity via the activation of G protein-coupled inwardly rectifying K+ (GIRK) channels. In addition, DR activity is modulated by local GABAergic transmission, which is believed to play a key role in the development of mood-related disorders. Here, we sought to characterize the role of GIRK2 subunit-containing channels on the basal electrophysiological properties of DR neurons and to investigate whether the presynaptic and postsynaptic activities of 5-HT1A, GABAB, and GABAA receptors are affected by Girk2 gene deletion. Whole-cell patch-clamp recordings in brain slices from GIRK2 knockout mice revealed that the GIRK2 subunit contributes to maintenance of the resting membrane potential and to the membrane input resistance of DR neurons. 5-HT1A and GABAB receptor-mediated postsynaptic currents were almost absent in the mutant mice. Spontaneous and evoked GABAA receptor-mediated transmissions were markedly reduced in GIRK2 KO mice, as the frequency and amplitude of spontaneous IPSCs were reduced, the paired-pulse ratio was increased and GABA-induced whole-cell currents were decreased. Similarly, the pharmacological blockade of GIRK channels with tertiapin-Q prevented the 5-HT1A and GABAB receptor-mediated postsynaptic currents and increased the paired-pulse ratio. Finally, deletion of the Girk2 gene also limited the presynaptic inhibition of GABA release exerted by 5-HT1A and GABAB receptors. These results indicate that the properties and inhibitory activity of DR neurons are highly regulated by GIRK2 subunit-containing channels, introducing GIRK channels as potential candidates for studying the pathophysiology and treatment of affective disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。