Aging negatively affects estrogens-mediated effects on nitric oxide bioavailability by shifting ERα/ERβ balance in female mice

衰老会通过改变雌性小鼠的 ERα/ERβ 平衡,对雌激素介导的一氧化氮生物利用度产生负面影响

阅读:6
作者:Laura Novensà, Susana Novella, Pascual Medina, Gloria Segarra, Nadia Castillo, Magda Heras, Carlos Hermenegildo, Ana Paula Dantas

Aims

Aging is among the major causes for the lack of cardiovascular protection by estrogen (E2) during postmenopause. Our study aims to determine the mechanisms whereby aging changes E2 effects on nitric oxide (NO) production in a mouse model of accelerated senescence (SAM).

Conclusions

Together, our data suggest that aging has detrimental effects on E2-mediated benefits on NO bioavailability, partially by affecting the ability of E2 to induce up regulation of eNOS and decrease of O(2)(-). These modifications may be associated to aging-mediated modifications on global DNA methylation status, but not to a specific methylation at 5'flanking region of ERα gene.

Results

Although we found no differences on NO production in females SAM prone (SAMP, aged) compared to SAM resistant (SAMR, young), by either DAF-2 fluorescence or plasmatic nitrite/nitrate (NO2/NO3), in both cases, E2 treatment increased NO production in SAMR but had no effect in SAMP. Those results are in agreement with changes of eNOS protein and gene expression. E2 up-regulated eNOS expression in SAMR but not in SAMP. E2 is also known to increase NO by decreasing its catabolism by superoxide anion (O(2)(-)). Interestingly, E2 treatment decreased O(2)(-) production in young females, while increased O(2)(-) in aged ones. Furthermore, we observed that aging changed expression ratio of estrogen receptors (ERβ/ERα) and levels of DNA methylation. Increased ratio ERβ/ERα in aged females is associated to a lack of estrogen modulation of NO production and with a reversal in its antioxidant effect to a pro-oxidant profile. Conclusions: Together, our data suggest that aging has detrimental effects on E2-mediated benefits on NO bioavailability, partially by affecting the ability of E2 to induce up regulation of eNOS and decrease of O(2)(-). These modifications may be associated to aging-mediated modifications on global DNA methylation status, but not to a specific methylation at 5'flanking region of ERα gene.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。