Efficient Chemical Surface Modification Protocol on SiO2 Transducers Applied to MMP9 Biosensing

应用于 MMP9 生物传感的 SiO2 传感器高效化学表面改性方案

阅读:7
作者:Ana L Hernandez, Sidharam P Pujari, María F Laguna, Beatriz Santamaría, Han Zuilhof, Miguel Holgado

Abstract

The bioreceptor immobilization process (biofunctionalization) turns to be one of the bottlenecks when developing a competent and high sensitivity label-free biosensor. Classical approaches seem to be effective but not efficient. Although biosensing capacities are shown in many cases, the performance of the biosensor is truncated by the inefficacious biofunctionalization protocol and the lack of reproducibility. In this work, we describe a unique biofunctionalization protocol based on chemical surface modification through silane chemistry on SiO2 optical sensing transducers. Even though silane chemistry is commonly used for sensing applications, here we present a different mode of operation, applying an unusual silane compound used for this purpose (3-Ethoxydimethylsilyl)propylamine, APDMS, able to create ordered monolayers, and minimizing fouling events. To endorse this protocol as a feasible method for biofunctionalization, we performed multiple surface characterization techniques after all the process steps: Contact angle (CA), X-ray photoelectron spectroscopy (XPS), ellipsometry, and fluorescence microscopy. Finally, to evidence the outputs from the SiO2 surface characterization, we used those SiO2 surfaces as optical transducers for the label-free biosensing of matrix metalloproteinase 9 (MMP9). We found and demonstrated that the originally designed protocol is reproducible, stable, and suitable for SiO2-based optical sensing transducers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。