The auxiliary subunits Neto1 and Neto2 have distinct, subunit-dependent effects at recombinant GluK1- and GluK2-containing kainate receptors

辅助亚基 Neto1 和 Neto2 在重组 GluK1 和 GluK2 含海人酸受体中具有不同的亚基依赖性作用

阅读:4
作者:Janet L Fisher

Abstract

The kainate-type of ionotropic glutamate receptors are assembled from a combination of five different pore-forming subunits (GluK1-5), which confer distinct functional and pharmacological properties. These receptors are also modulated by co-assembly with the auxiliary subunits Neto1 and Neto2. To determine the impact of variation in subunit composition on the functional interaction between kainate receptors and Neto subunits, the Neto subunits were combined with either GluK1 or GluK2 in HEK-293T cells and responses to glutamate examined through patch-clamp recordings. Co-expression of GluK1 with either Neto1 or Neto2 caused a substantial increase in glutamate sensitivity and a slowing of the onset of desensitization at low agonist concentrations. However, at higher glutamate concentrations the primary effect of Neto2 was to slow the onset of desensitization, while that of Neto1 was to increase recovery from desensitization. In contrast, co-expression of Neto2 with GluK2 homomeric receptors had only modest effects on glutamate sensitivity, but increased the rate of recovery from desensitization as well as slowing its onset at all agonist concentrations. The properties of chimeric Neto1/Neto2 subunits suggested that the extracellular N-terminal region including the two CUB domains was largely responsible for the distinct regulatory effects of Neto1 and Neto2 on the desensitization properties of GluK1 homomeric receptors. These results further demonstrate that the functional effects of Neto subunits depend upon the subunit identity of both the auxiliary and the pore-forming subunits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。