Targeting cyclin-dependent kinase 9 by a novel inhibitor enhances radiosensitization and identifies Axl as a novel downstream target in esophageal adenocarcinoma

通过新型抑制剂靶向细胞周期蛋白依赖性激酶 9 可增强放射增敏作用,并确定 Axl 是食管腺癌的新型下游靶点

阅读:7
作者:Omkara Lakshmi Veeranki, Zhimin Tong, Rashmi Dokey, Alicia Mejia, Jianhu Zhang, Yawei Qiao, Pankaj Kumar Singh, Riham Katkhuda, Barbara Mino, Ramesh Tailor, Jaime Rodriguez Canales, Roland Bassett, Jaffer Ajani, Ji Yuan Wu, Scott Kopetz, Mariela Blum, Wayne Hofstetter, Michael Tetzlaff, Sunil Krishn

Abstract

Cyclin-dependent kinase 9 (CDK9) transcriptionally regulates several proteins and cellular pathways central to radiation induced tissue injury. We investigated a role of BAY1143572, a new highly specific CDK9 inhibitor, as a sensitizer to radiation in esophageal adenocarcinoma. In vitro synergy between the CDK9 inhibitor and radiation was evaluated by clonogenic assay. In vivo synergy between the CDK9 inhibitor and radiation was assessed in multiple xenograft models including a patient's tumor derived xenograft (PDX). Reverse phase protein array (RPPA), western blotting, immunohistochemistry, and qPCR were utilized to identify and validate targets of the CDK9 inhibitor. The CDK9 inhibitor plus radiation significantly reduced growth of FLO-1, SKGT4, OE33, and radiation resistant OE33R xenografts and PDXs as compared to the cohorts treated with either single agent CDK9 inhibitor or radiation alone. RPPA identified Axl as a candidate target of CDK9 inhibition. Western blot and qPCR demonstrated reduced Axl mRNA (p = 0.02) and protein levels after treatment with CDK9 inhibitor with or without radiation in FLO-1 and SKGT4 cells. Axl protein expression in FLO-1 xenografts treated with combination of CDK9 inhibitor and radiation was significantly lower than the xenografts treated with radiation alone (p = 0.003). Clonogenic assay performed after overexpression of Axl in FLO-1 and SKGT4 cells enhanced radiosensitization by the CDK9 inhibitor, suggesting dependency of radiosensitization effects of the CDK9 inhibitor on Axl. In conclusion, these findings indicate that targeting CDK9 by BAY1143572 significantly enhances the effects of radiation and Axl is a novel downstream target of CDK9 in esophageal adenocarcinoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。